
Plug-and-play sanitization for TFHE

Florian Bourse1 and Malika Izabachène2

1 Independent scholar
2 Cosmian, Paris, France

Abstract. Fully Homomorphic encryption allows to evaluate any circuits over encrypted
data while preserving the privacy of the data.

Another desirable property of FHE called circuit privacy enables to preserve the privacy of
the evaluation circuit, i.e. all the information on the bootstrapped ciphertext, including the
computation that was performed to obtain it, is destroyed.

In this paper, we show how to directly build a circuit private FHE scheme from TFHE
bootstrapping (Asiacrypt 2016). Our proof frame is inspired from the techniques used in
Bourse etal (Crypto 2016), we provide a statistical analysis of the error growth during the
bootstrapping procedure where we adapt discrete Gaussian lemmata over rings. We make
use of a randomized decomposition for the homomorphic external product and introduce a
public key encryption scheme with invariance properties on the ciphertexts distribution. As
a proof of concept, we provide a C implementation of our sanitization strategy.

Keywords: Fully Homomorphic Encryption, circuit privacy, leftover hash lemma, sani-
tization, bootstrapping implementation.

1 Introduction

A Fully Homomorphic Encryption (FHE) scheme allows to evaluate any circuit over en-
crypted data without having to decrypt them. A standard requirement for homomorphic
encryption schemes is semantic security against chosen plaintext attacks, which guaran-
tees that the data remains unknown to the party who evaluates the circuit.

For most of the known FHE schemes, semantic security relies on the hardness of the
Learning With Errors (LWE) problem [Reg05], or variants of LWE, meaning that the
message is slightly offset by some noise that grows after a homomorphic computation. In
order to be able to continue computation, a procedure called bootstrapping, first described
in [Gen09], is used to refresh the noise in a ciphertext to a fixed manageable level.

The bootstrapping procedure is costly compared to basic operations, but packing
techniques (e.g., [Bra12,BGV12,FV12,CKKS17,CZ17,MS18]) enable efficient amortized
timings. Unfortunately, these techniques still have a very high latency (even though lots
of ciphertexts can be bootstrapped at once, the time it takes for bootstrapping a single
ciphertext remains prohibitively large) and are not always compatible with certain real-
time applications. A series of works (e.g.,[AP14,DM15,CHK+18,CGGI20]) tackles this
issue by optimizing the bootstrapping of a single ciphertext, which is desirable in some
scenarios.

Circuit privacy. Another property called circuit privacy is also crucial in many scenarios
where the evaluation circuit contains sensitive information; typical examples being classi-
fication algorithms or financial prediction algorithms or many other scenarios where the
delegated computation party may act as a service provider. Intuitively, the idea behind
circuit privacy is that no one can reverse-engineer the computation into which a ciphertext
went through.

2 Florian Bourse and Malika Izabachène

A bit more formally, an FHE scheme achieves circuit privacy for a class of functions if
the output distribution of the evaluation procedure of the FHE scheme only depends on
the result and does not leak information on which function from the class was evaluated.
In addition, knowing the secret key should not give any advantage.

The property of circuit privacy has also found applications in cryptographic protocols:
a first example is the computation of a private set intersection of two datasets based on
homomorphic encryption [CLR17,CMdG+21] where a receiver has input set X and sends
its dataset encrypted to a sender with input Y . The latter performs some homomorphic
computation so that at the end, the receiver outputs X ∩ Y . In order to provide security
against a semi-honest receiver, one technique relies on using a circuit private homomor-
phic encryption scheme. Another example can be found in the lattice-based threshold
signature constructions [BGG+18,ASY22], built from threshold FHE, which also require
to hide information in the computation of the partial decryption shares.

Different flavors of circuit privacy may be desired and some relations between them
can be established. Circuit privacy against malicious adversaries, where the public keys
and/or ciphertexts are not necessarily honestly generated, is much stronger than circuit
privacy against passive adversaries. Fortunately, [OPP14] devised a technique to upgrade
a compact FHE scheme circuit private against passive adversaries using another (possibly
non-compact) FHE scheme circuit private against malicious adversaries, which can even
possibly start from a non circuit private compact FHE schemes using some additional
twists. Also, depending on the application, the result of the computation might be sent
back and decrypted directly, but also might be sent to another server for additional com-
putation. This refinement of the circuit private property has been defined in [GHV10] as
1-hop for the first case, or multi-hop for the second case. An FHE scheme that is i-hop
circuit private allows for i steps of computation before the ciphertext has to be decrypted.
Finally, an FHE scheme could achieve circuit privacy for a particular class of functions
but might fail to evaluate other functions in a circuit private way.

Another closely related property is sanitization of FHE ciphertexts as defined
in [DS16], which asks that the FHE scheme includes a Sanitize algorithm which maps
ciphertexts to a canonical distribution depending only on its underlying plaintext. It is
straightforward to see that sanitization implies circuit privacy: appending Sanitize at the
end of each evaluation procedure makes it possible for the FHE scheme to reach multi-hop
circuit privacy for all functions. The other direction requires some additional assumptions
and technical details such as circular security assumption, but intuitively, a circuit private
evaluation of the bootstrapping procedure would yield a sanitization algorithm.

We also note that the notion of circuit privacy for FHE is very closely related to circuit
privacy in multiparty computation (MPC), as FHE can be used as a building block in
low communication MPC protocols.

1.1 Previous works

The first circuit private technique was proposed in [Gen09] and relies on noise flooding.
The noise contained in a ciphertext is the main source of leakage. The idea of noise
flooding is to add a noise with very large parameter at the end of the computation to
drown the existing noise and to avoid an adversary making use of the information it
contains. This yields a 1-hop scheme that is circuit private for the class of all functions.
This technique requires the starting modulus-to-noise ratio to be superpolynomial, which
makes the security rely on a stronger LWE assumption, and requires larger parameters.

A new approach was proposed in [DS16] to avoid this downside, and achieves circuit-
privacy for FHE schemes relying on LWE with a polynomial modulus-to-noise ratio, based

Plug-and-play sanitization for TFHE 3

on a sanitization algorithm which relies on the use of the bootstrapping. Their sanitization
technique is based on a paradigm they call soak and spin, which consists of iterations of
two consecutive steps: a first step invokes a Refresh algorithm which reduces the noise of
the input ciphertext to a fixed level; a second step, ReRand injects noise in the ciphertext
in order to make it closer to a canonical distribution of ciphertexts. After λ consecutive
iterations of Refresh and Rerand over any two input ciphertexts decrypting to the same
message, the statistical distance between the two output ciphertexts is bounded by 2−λ.
An additional requirement to their work is that the output of Rerand should decrypt to
the correct message with very high probability in order to reach the sanitization property.
The authors of [AP20] proposed a refined security analysis of the sanitization algorithm
proposed in [DS16] based on the used of the Rényi divergence instead of the statistical
distance. They show that the number of iterations can be reduced depending on the target
number of evaluations that needs to be hidden. They also set the parameters in the soak
and spin process such that decryption fails with exponentially small probability.

A refinement of this technique was proposed in [BdMW16] to achieve circuit privacy
for NC1 circuits without relying on the circular security assumption, and basing its secu-
rity on plain LWE with polynomial modulus-to-noise ratio. The main idea of this paper
is to tweak the computation paradigm to branching programs, which they show can be
evaluated in a circuit private way using a two steps randomization process at each stage of
the computation. This randomization process consists of both switching the homomorphic
product to its randomized counterpart from [AP14], and adding a random Gaussian noise.
The first step ensures that the distribution of the noise after one step of computation is
close to a Gaussian noise, with a parameter independent of the previous states of the eval-
uation; this is done by making use of the randomized product. Adding a random Gaussian
noise in the second step ensures that at each step, the noise can have any value, and not
falls in a subset that could leak information about the computation being carried on. The
downside of this work is that it applies to schemes that are not implemented in practice
for efficiency reasons, namely the GSW cryptosystem [GSW13] and its variants [BV14],
and requires the functions to be converted to branching programs.

1.2 Our contributions

We propose a practical sanitization approach for FHE schemes with polynomial modulus-
to-noise ratio. Our solution is based on the bootstrapping procedure implemented using
GSW homomorphic product and applies to FHEW-like cryptosystems. In particular, our
sanitization algorithm is conceptually compatible with recent developement on the TFHE
framework which allows the evaluation of arbitrary functions or the evaluation of arith-
metic functions via large precision bootstrappings [BDF18,CIM19,GBA21,CLOT21] for
example, provided the parameters are adapted.

In practice, we obtain that the overhead of the sanitization property is very low when
comparing sanitizing and non-sanitizing TFHE bootstrapping for the same set of parame-
ters. For the sake of comparison, we evaluate the cost of [DS16] rerandomization strategy
for TFHE bootstrapping. With encryption of zero at hand which can be generated during
a pre-processing phase, our comparison gives that our strategy is at least 3 times faster
for the same set of parameters with a lower decryption failure probability. A comparison
is detailed in the supplementary materials, Section C.

Our solution for sanitization relies on the same assumption as for FHE without san-
itization and achieves strong properties in that our definition of sanitization is proven
in the simulation based model and holds for a bounded simulator, which implies the in-
distinguishible based sanitization property as defined in [DS16]. Also, as in their work,

4 Florian Bourse and Malika Izabachène

our construction implies multi-hop circuit privacy for the class of all functions, not only
functions in NC1 as in [BdMW16].

To this end, we generalize the randomization techniques from [AP14,BdMW16] to
the ring setting (see Lemma 13). We also identify a slight inaccuracy in [BdMW16] that
comes from the use of the Leftover Hash Lemma, invoking the 2-universality of vector
dot products as a randomness extractor. While this argument works when the modulus is
prime, it requires a bit more effort when this is not the case, and the bounds are usually
worse. We solve this issue by adapting the techniques from [MM11] and [LW20, Theorem
5.5] to our setting (see proofs of Lemmata 11 and 19).

We also develop new techniques to analyze the distributions of polynomials – combi-
nations of uniformly random polynomials and discrete Gaussian polynomials over lattices
– by diving into the structural details of the space we are interested in, namely a power-of-
two cyclotomic ring with a power-of-two modulus. We believe that the results we derive for
our specific use-case, e.g., the different bounds on smoothing parameters and the collision
probabilities for random variables, could be applied in other contexts, and try to present
them in a generic and educational way. One of these techniques includes building a new
public key encryption scheme (Construction 1) for polynomial messages, with ciphertexts
of zero whose distribution is invariant when multiplied by a power of X. We believe that
this property is of independent interest and give a toy example of a protocol making use
of it.

As a side contribution, we also present an alternative technique in Section 6 that
would yield to circuit privacy in a more direct way under some conditions on the param-
eters. Unfortunately, the conditions captured by Lemma 19 would require much larger
parameters than the set we select for efficiency reason with our construction.

Finally, we provide an implementation of our sanitization algorithm, and show a pos-
sible set of parameters that provably achieves sanitization, together with its execution
time. Our solution assumes that we have a large number of pre-computed encryptions of
zero at hand. In order to give interesting experimental results, we emulate an unbounded
precomputation by using the same encryption of zero multiple times. There is room of
improvement with respect to finding a more efficient instantiation of our Lemma 10, which
would have a positive impact on the timings of our sanitization technique.

Overview of the techniques. The underlying idea of our work is based on two observations.
A first remark is that the bootstrapping procedure of TFHE can be decomposed in 3 steps,
which are called BlindRotate, Extract, and KeySwitch, as illustrated on Figure 1. And if any
of these 3 steps destroys unwanted information of the input, all the information about any
previous evaluation on the ciphertext is washed away, and the bootstrapping procedure
becomes a sanitizing algorithm.

n-LWE TLWE N-LWE n-LWE

bk ks

BlindRotate Extract KeySwitch

Fig. 1. TFHE bootstrapping steps: n-LWE denotes a LWE ciphertext of dimension n. After an initial-
ization step not pictured here, the bootstrapping of an n-LWE ciphertext into a fresh n-LWE ciphertext
goes through three algorithms BlindRotate, Extract, and KeySwitch and requires two sets of keys: the
bootstrapping key bk and the keyswitching key ks. More details will be given later in the paper.

Plug-and-play sanitization for TFHE 5

Our focus is the BlindRotate procedure which we modify to be a circuit private evalu-
ation for the class of function BlindRotatea,b : s 7→ (0, testv) ·Xb−

∑
i siai parametrized by

a LWE ciphertext (a, b) for any polynomial testv and a variable s ∈ {0, 1}n.
We notice that BlindRotate computation is mostly made of homomorphic evaluations

of multiplexers, which behaves nicely for circuit privacy, as shown in [BdMW16]. We show
how to modify the BlindRotate procedure to make it circuit-private, by randomizing the
gadget decomposition, and by adding fresh encryptions of zero as well as a Gaussian noise
at each step.

In order to prove that the resulting CP-BlindRotate class of functions is indeed circuit-
private, the main difficulty comes from that fact that most of the random variables are
related and most of the tools at hand require independent distributions or no leakage.
To avoid some of these dependencies, we follow the strategy that [BdMW16] which were
applied to branching programs and analyze the distribution of the ciphertext after one
step of computation at a time. This allows us to replace each state of the evaluation by
a random variable independent of the computation already carried and then prove by
induction that the resulting distribution at the end of the algorithm only depends on the
final message and public parameters.

An additional difficulty compared to the evaluation of branching programs is that the
computation does not just carry information through the different stages of the evalua-
tion, there are also some multiplications by powers of X being done on the underlying
plaintext, and also on the previous states of the accumulator. Also, we are dealing with
polynomials and not scalar vectors, which means that the different components are com-
bined with each other along products, so we cannot just directly apply the standard tools
because of the dependencies between components. To tackle these issues, we carefully
craft distributions that are spherical so that multiplying them by a power of X doesn’t
change the distribution, and we explicitly state the matrix-vector products that appear
when doing polynomial multiplications in order to exploit known results on lattices.

To give a bit more details on one step of the induction, the distribution of LWE ci-
phertexts is given by two elements beside its associated plaintext, for which we need to
analyze the distribution: a vector that should be sampled uniformly at random, and the
noise component. We generalize the noise analysis [BdMW16] to the ring setting, by view-
ing products of polynomials in our specific case as matrix-vector products, and deriving
all the bounds needed to apply the underlying lemmata. As in [BdMW16], we leverage
the fact that the decomposition is now randomized, with a large enough parameter in
order to prove that the noise is statistically close to a discrete Gaussian distribution, as
a linear combination of discrete Gaussian distributions, and we add a small Gaussian
variable that ensures that the support of this discrete Gaussian is not a sublattice, i.e.,
all the values can be reached by this noise and it is not restricted to a subset of values
that could leak information about the evaluation being carried on.
On the other hand, the way we handle the uniformly random part of the ciphertext is
completely different. In [BdMW16], this part of the proof is handled by the Leftover Hash
Lemma. This requires quite large vectors, especially since the modulus (a power of 2) is
not prime. For example, when half of the elements are not invertible (which is the case
both with integers modulo a power of 2 and with polynomials modulo XN + 1 modulo
a power of 2), even when sampling two uniformly random vectors a and b of size m,
their inner-product can’t be statistically close to uniform unless m is at least linear in
the security parameter λ. This is because with probability 1

2m , none of the elements of a
are invertible, so the result is not invertible. In TFHE, the parameters are optimized for
efficient bootstrapped operations, the polynomial vectors are of size at most 6 and of size

6 Florian Bourse and Malika Izabachène

10 using our implementation, so this approach cannot be used for a practical implementa-
tion of circuit privacy or sanitization. For the sake of completeness, and in the eventuality
that the parameters in use in the future will evolve, we also provide a proof that this
technique works when the parameters are large enough, and we discuss the underlying
conditions in Section 6.
In our work, we choose to add a fresh ciphertext with a correctly generated uniformly
random element at each step of computation instead. This fresh ciphertext can be ob-
tained via a public encryption key that is a collection of encryptions of zero, from which a
random subset-sum is computed, multiplied by a random power of X. The distributions
of those ciphertexts has to be carefully crafted to be spherical even when the sanitization
key is given out. Now, we can use the Leftover Hash Lemma with a large enough number
of encryptions of zero in the sanitization key without impacting the efficiency of the other
algorithms, especially since those ciphertexts can be precomputed offline.

Organization. In Section 2, we present the notations used through the paper and recall
the preliminaries about Gaussian distributions, and the TFHE scheme. In Section 3, we
present our generalization of the randomization techniques of [BdMW16] that will be used
for our result, as well as our new public key encryption scheme that verifies the required
properties. In Section 4, we present our techniques for circuit privacy and show how to
build a sanitization algorithm for TFHE. In Section 5, we discuss the practical parameters
of our implementation. In Section 6, we present a different and more direct strategy to
achieve sanitization and specify the conditions required on the parameters.

2 Preliminaries

In this section, we give notations, mathematical definitions and lemmata we will use for
our proofs.

2.1 Notations and definitions

In this paper, we will note λ a security parameter. The set of integers from 1 to n will
be noted [n] for convenience. We use lower case bold font, e.g. a, to denote (possibly
row) vectors, and upper case bold font, e.g. A, to denote matrices. We write the left-right
concatenation of matrices using |, e.g. (A | B). We will use ⊗ to denote the Kronecker
product of two matrices. We let q be an integer modulus such that q = Bℓ with B a
power of 2. We denote T the set of real numbers modulo one and the discretized torus
Ẑq = {0, 1q , · · · ,

q−1
q } is

1
qZ ∩ T. Note that Ẑq is isomorphic to Zq = Z/qZ. In particular,

the multiplication over Ẑq is given by x · y = qx · y, for all x, y ∈ Ẑq.

We set B = {0, 1} and BN (X) the set of polynomials of degree at most N with
coefficients in B. We denote R = Z[X] mod XN + 1 the set of integer polynomials of
degree at most N , where N is a power-of-two. We set Rq = Zq[X] mod Xn + 1 and R̂q

the set of polynomials with coefficients over Ẑq modulo XN + 1. Vectors are denoted as
row vectors, and at denotes the column vector which is the corresponding transpose vector
of a. The absolute value of an element a in T, denoted |a|, is the absolute value of its
representative that is closest to 0 (i.e., in]−0.5, 0.5]). We also use this representative when
we define norms for vectors, matrices, and polynomials, and also use those for elements
in Ẑq. The euclidean norm of a vector a is denoted ∥a∥2 and its infinity norm is denoted
∥a∥∞. The spectral norm of a square matrix A, i.e. its largest singular value, is denoted
∥A∥2.

Plug-and-play sanitization for TFHE 7

In order to avoid cumbersome notations throughout the paper, we will use the following
shorthand notation to define anticyclic matrices corresponding to polynomial multiplica-
tions modulo XN + 1.

We denote powX =
(
1, X, . . . ,XN−1

)
∈ R1×N . For any polynomial p =

N−1∑
i=0

piX
i ∈ R̂q,

there exists a matrix P =


p0 −pN−1 −p1
p1 p0 −pN−1 . . . −p2
...

. . .
...

pN−1 p1 p0

 ∈ ẐN×N
q such that powX ·P =

powX ⊗ p.

We also use the following euclidean norm for polynomials in R̂q: ∥p∥2 =

√√√√N−1∑
i=0

p2i .

Gadget vector. We let g = (1/B, . . . , 1/Bℓ) ∈ R̂q
1×ℓ

be the vector of powers of B and let
define the gadget matrix as G = Id+1 ⊗ gt, i.e.

G =


1/B · · · 1/Bℓ 0 · · · 0 · · · 0

0 · · · 0 1/B · · · 1/Bℓ . . .
...

...
. . .

. . . 0 0
0 · · · 0 · · · 0 1/B · · · 1/Bℓ


t

∈ R̂q
(d+1)·ℓ×(d+1)

(1)

2.2 Random variables

We write y← P when y is sampled from distribution P.

Variance and covariance. For a random variable X, we denote E[X] the expected value
of X. The covariance of two random variables X and Y is E [(X − E[X])(Y − E[Y])].
The covariance matrix Var (X) of a vector of random variables X = (X1, . . . , XN) is the
matrix whose coefficient on row i, column j is the covariance of Xi and Xj . For any two
real value vectors of random variables X and Y and any real α, we have:

Var (αX+Y) = α2Var (X) + Var (Y) .

Statistical distance and min-entropy. The statistical distance between two probability
distributions P and Q over a discrete domain X is defined as

∆ (P,Q) = 1
2

∑
a∈X |P(a)−Q(a)|

We say that two distributions P andQ are (statistically) close and we write P ≈s Q if their
statistical distance is negligible in λ. The min-entropy of a random variable X is defined as
H∞(X) = − logmaxx Pr[X = x]. It gives a bound on the probability of collision for two in-
dependent identically distributed random variables X and X ′: Pr(X = X ′) ≤ 2−H∞(X)

The min-entropy is a useful tool when analyzing conditional probability distribution
thanks to the following property: for any random variable Y on a set Y,

H∞ (X | Y) ≥ H∞(X)− log |Y|.

2.3 Gaussian distribution over lattices

Lattices. An m-dimensional lattice is a discrete subgroup of Rm. Given k linearly inde-
pendent vectors of Rm (b1,b2, . . . ,bk), the lattice generated by B = (b1 | b2 | . . . | bk)
is of rank k and is denoted:

8 Florian Bourse and Malika Izabachène

Λ(B) =

{
k∑

i=1

xibi ∈ Rm | xi ∈ Z

}
.

For any v ∈ Ẑd+1
q , we denote the cosets of the lattice orthogonal to the gadget matrix

G defined in equation (1) by

Λ⊥
v (G) = {u ∈ Z(d+1)·ℓ | Gtu ∈ v + Zd+1}, Λ⊥(G) = Λ⊥

0 (G)

For the sake of readability, we also extend the notation Λ⊥(G) to the set of vectors of

polynomials, by identifying a polynomial u =
N−1∑
i=0

uiX
i with the vector of its coefficients

u = (u0 | u1 | . . . | uN−1):

Λ⊥(G) = {u ∈ R(d+1)·ℓ | Gtu ∈ Rd+1}

which is a full rank lattice of dimension N(d+ 1) · ℓ.

Gaussian Distributions. The ellipsoidal Gaussian distribution over Rn centered at 0 with
covariance matrix Σ = StS where S ∈ Rm×n is a rank-n matrix, is defined as:

ρS(x) = exp(−πxt(StS)−1x)

When S = sIn, the spherical Gaussian distribution ρS is also denoted ρs.

The ellipsoidal Gaussian distribution with parameter S over a countable set (a lattice Λ
or a coset Λ+ x) is defined as

∀x ∈ C, DC,S(x) =
ρ
S(x)

ρ
S(C)

Lemma 1 (Preimage sampling [GPV08,Pei10,MP12,AP14]). There is an effi-
cient randomized decomposition function which on input v ∈ Ẑd+1

q outputs a sample

u ∈ Z(d+1)ℓ from a distribution negligibly close to DΛ⊥
v (G),γ with parameter γ = Õ(1).

We note that we can reach the target distribution exactly using the sampler
from [BLP+13].

2.4 Additional lemmata

In the following, we will denote ηϵ(Λ) the smoothing parameter of a lattice Λ. Intuitively,
it is a Gaussian parameter value beyond which discrete Gaussian distributions over Λ
behaves almost as continuous Gaussian distributions, ϵ being a bound on the statistical
distance that appears in the following lemmata. The next result gives a bound on the
smoothing parameter of a generic lattice.

Lemma 2 ([MR07, Lemma 3.3]). Let Λ be any rank-m lattice and ε be any positive
real. Then

ηε (Λ) ≤ λm (Λ) ·
√

ln (2m (1 + 1/ε))

π

where λm (Λ) is the smallest R such that the ball BR centered in the origin and with radius
R contains m linearly independent vectors of Λ.

Plug-and-play sanitization for TFHE 9

Lemma 3 ([Ban93]). For any n-dimensional lattice Λ and parameter s > 0, the eu-
clidean norm of a sample u from DΛ,s, ∥u∥2 ≤ s

√
n, except with probability at most

2−2n.

Lemma 4 ([Reg05, Claim 3.8]). Let Λ ⊆ Zm be any lattice, c ∈ Rm, ε > 0 and
r ≥ ηε(Λ). Then

ρr (Λ+ c) ∈ rm

det (Λ) (1± ε)

Lemma 5 ([AGHS13, Lemma 4]). For any rank-m lattice Λ, 0 < ε < 1, vector c ∈
Rm, and full-rank matrix S ∈ Rm×m, such that σm(S) ≥ ηε (Λ), we have

ρS (Λ+ c) ∈
[
1− ε

1 + ε
, 1

]
· ρS(Λ).

where σm(S) is the smallest singular value of S.

Lemma 6 (Simplified version of [Pei10, Theorem 3.1]). Let ε > 0, r1, r2 > 0 be
two Gaussian parameters, and Λ be a lattice. If r1r2√

r21+r22
≥ ηε(Λ), then

∆(y1 + y2,y
′) ≤ 8ε

where y1 ← DΛ,r1 ,y2 ← DΛ,r2, and y′ ← D
Λ,
√

r21+r22

Leftover Hash Lemma. We use the following variant of the Leftover Hash Lemma, which
can be found in [ALS16] as a particular case of [MM11, Lemma 2.3]

Lemma 7. Let q = pk for p prime and k ≥ 1. Let m ≥ n ≥ 1. Take X a distribution
over Zm. Let D0 be the uniform distribution over Zn×m

q × Zn
q and D1 be the distribution

of (A,A ·x) ∈ Zn×m
q ×Zn

q , where A is uniformly random in Zn×m
q and x is sampled from

X . Then

∆(D0, D1) ≤
1

2

√√√√ k∑
i=1

pi·n · Pri,

where Pri is the collision probability of two independent samples from X mod pi.

2.5 Fully Homomorphic Encryption

In this paper, we focus on secret key fully homomorphic encryption for efficiency reasons,
meaning that the same key is required for encryption and decryption. This is sufficient
for many applications, but our results can be easily generalized to the public key setting
if required, by adding an encryption key which consists of a set of encryptions of zero.
The main downside becomes storing the public key, as is usually the case in lattice-based
cryptography.

Definition 1 (Fully Homomorphic Encryption). A fully homomorphic encryption
scheme is given by four polynomial time algorithms, (KeyGen,Encrypt,Decrypt,Eval) de-
scribed as follow:

KeyGen(1λ) on input a security parameter λ outputs an evaluation key evk and a secret
key sk;

Encrypt(sk, µ) on input a secret key sk and a message µ returns a ciphertext ct;

10 Florian Bourse and Malika Izabachène

Decrypt(sk,ct) on input a secret key sk and a ciphertext ct returns a message µ;
Eval(evk, f,ct1, . . . ,ctt) on input an evaluation key evk, a function f on t inputs, and

t ciphertexts ct1, . . . ,ctt returns a ciphertext ctf .

Let us denoteM the message space and C the ciphertext space. For µ ∈M, we define
Cµ = Decrypt(sk, ·)−1(µ), the set of all ciphertexts that decrypt to µ.

We say that an FHE scheme is correct if, for (evk, sk) sampled from KeyGen(1λ) :

– for all messages µ ∈M: Encrypt(sk, µ) ∈ Cµ with overwhelming probability.
– for all functions f : Mt → M, (µ1, . . . , µt) ∈ Mt, (ct1, . . . ,ctt) ∈ Cµ1 × . . . × Cµt :

Eval(evk, f,ct1, . . . ,ctt) ∈ Cf(µ1,...,µt) with overwhelming probability;

We say that an FHE scheme is compact if the ciphertexts are of polynomial size. We say
that an FHE has indistinguishability under chosen plaintext attacks (IND-CPA security)
or is semantically secure if no polynomial time adversary can have a non-negligible ad-
vantage in guessing a bit β given oracle access to the function (µ0, µ1) 7→ Encrypt(sk, µβ).

Definition 2 (Circuit Privacy). A (fully) homomorphic encryption scheme is circuit-
private for a class of functions F if the homomorphic evaluation of a function f ∈ F on
encrypted messages does not leak more information than the evaluation result, even given
the secret key, i.e. there exists a polynomial time simulator Sim such that the following
property holds for any f ∈ F :(

Sim
(
1λ, f(µ1, · · · , µt), (ct1, · · · ,ctt),evk

)
, (ct1, · · · ,ctt), sk

)
≈s (Eval (evk, f, (ct1, · · · ,ctt)) , (ct1, · · · ,ctt), sk) ,

where cti ← Encrypt(sk, µi), (evk, sk)← KeyGen(1λ).

Remark 1. We point out that we are only dealing with honest-but-curious adversaries.
This is captured by the fact that the ciphertexts and keys are sampled correctly. To
prevent attacks in the malicious setting, one can use the techniques of [OPP14] to upgrade
our scheme, using a maliciously circuit-private (possibly non-compact) FHE scheme. In
comparison, in the following definition of sanitization, we still assume that the keys are
sampled correctly, but privacy holds for any ciphertext, even maliciously generated ones.

Sanitization of ciphertexts. Intuitively, the goal of a sanitization algorithm is to remove
all information conveyed in the ciphertext beside the message, that is, we want to erase
its memory from any previous evaluations. More formally, we ask that a sanitization
algorithm verifies two properties: it must be message-space preserving and sanitizing.
These properties are defined as follow:

Sanitize(evk,ct) on input an evaluation key evk and a ciphertext ct returns a cipher-
text cts.

We say that Sanitize is message-space preserving if for any µ ∈ M, any ciphertext
ct ∈ Cµ, Sanitize(evk,ct) ∈ Cµ with overwhelming probability. We say that Sanitize is
sanitizing if there exists a polynomial time simulator Sim such that for any µ ∈ M, any
ciphertext ct ∈ Cµ, the following holds:(

Sim(1λ, µ,evk), sk
)
≈s (Sanitize(evk,ct), sk) ,

where evk is sampled honestly.

Remark 2. Note that given a sanitizing and message-space preserving Sanitize algorithm,
it is easy to construct an FHE scheme that is circuit-private for all functions, by running
Sanitize at the end of the evaluation procedure.

Plug-and-play sanitization for TFHE 11

2.6 Background on TFHE

The TFHE encryption scheme [CGGI20] encrypts messages in a subset M of T, using
LWE. For simplicity, we will takeM = {0, 12} in the following.

A LWE encryption of a message µ ∈ M is a vector (a | a · s+ µ+ e) ∈ Ẑ1×(n+1)
q

where a is uniform over Ẑ1×n
q , e is sampled from χϑ — a noise distribution with variance

ϑ. The secret key s is sampled from a uniform distribution over Bn. In order to decrypt
(a | b), one computes an approximation of µ defined as the phase of ciphertext (a | b),
φs (a | b) = b− a · s, and rounds it to nearest element inM.

The first step of the bootstrapping is to deterministically map ciphertexts from

Ẑ1×(n+1)
q to Zn+1

2N . This incurs some rounding errors that could change the result of decryp-
tion on ill-formed ciphertexts. We thus take this additional rounding step into account
when defining Cµ in order to capture sanitization and message-space preserving even for
maliciously generated ciphertexts. If parameters are set carefully, this has no impact on
ciphertexts obtained in an honest way. For µ ∈ {0, 12}, we say that

Cµ =

{
(a | b) ∈ Ẑ1×(n+1)

q

∣∣∣∣∣
∣∣∣∣∣⌊2Nb⌉ −

n∑
i=1

si⌊2Nai⌉ − µ

∣∣∣∣∣ ≤ 1

4

}
.

The error of a ciphertext c ∈ Cµ is defined as φs (c) − µ, and its variance Var (c) as the
variance of the error of c or equivalently the variance of φs (c).

The semantic security of this encryption scheme relies on the decision LWE prob-
lem [Reg05], or equivalently, its search counterpart:

– The decision LWE problem, parametrized by n and χϑ, asks to distinguish the uniform

distribution over Ẑ1×(n+1)
q from the distribution of fresh LWE encryptions of 0 using

the same secret key s sampled uniformly at random in Bn.

– The search LWE problem asks to find s from polynomially many fresh LWE encryptions
of 0 using the same secret key s sampled uniformly at random in Bn.

Our sanitization algorithm is based on the bootstrapping procedure of TFHE, which
is an optimized version of FHEW bootstrapping [DM15]. The idea behind FHEW-based
bootstrapping is to compute a ciphertext of Xφs(c). In order to achieve this, polynomials
are encrypted using two distinct schemes: TLWE — a variant of LWE using ring elements
— and TGSW.
A TLWE encryption of a message µ ∈ R̂q is a vector (a | a · s̃+ µ+ e) ∈ R̂q

1×(d+1)
, where

a is uniformly random in R̂q
d
, e has coefficients sampled from χϑ — ϑ is the noise variance.

The secret key s̃ is sampled uniformly at random over R̂q
d
. We note TLWEs̃(µ) the set of

random variables (a | b) in R̂q
1×(d+1)

whose phases φs̃ (a | b) = b− a · s̃ of center µ, and
TLWEs̃,ϑ(µ) a fresh TLWE encryption of µ under secret key s̃ with noise variance ϑ. For
c ∈ TLWEs̃(µ), we define its error Err (c) = φs̃ (c)−µ, and we note Var (c) the covariance
matrix of its coefficients. The semantic security of this encryption scheme relies on the
ring variant of LWE [LPR10].

A TGSW encryption of a message µ ∈ R is a matrix Z+µG in R̂q
(d+1)·ℓ×(d+1)

, where
each of the (d + 1) · ℓ rows of Z is a TLWE encryption of 0. The secret key is the same
as for TLWE and the matrix G is defined as in Section 2.1. We note TGSWs̃,ϑ(µ) a fresh
TGSW encryption of µ under secret key s̃ with noise variance ϑ. More visually, we have:

12 Florian Bourse and Malika Izabachène

TGSWs̃,ϑ(µ) =


TLWEs̃,ϑ(0)
TLWEs̃,ϑ(0)

...
TLWEs̃,ϑ(0)

+ µG = (A | As̃+ e) + µG

where A is sampled uniformly at random in R̂q
(d+1)·ℓ×d

, and each coefficient appearing in
e is sampled from χϑ. The semantic security of this encryption scheme follows from the
semantic security of TLWE.

Deterministic decomposition and external product: Any v ∈ R̂q
1×(d+1)

can be uniquely
and deterministically decomposed into a small vector G−1(v) ∈ R1×(d+1)·ℓ whose co-
efficients are integers in [−B/2, B/2[and such that G−1(v) · G = v. The full details
are provided in supplementary materials Section B.1. This allows to multiply a TGSW
ciphertext C and a TLWE ciphertext c:

C⊡ c = G−1(c) ·C

This external product allows homomorphic evaluations of multiplexers with convenient
noise growth c0 +C⊡ (c1 − c0) for a TGSW encryption C of the selector bit, and TLWE
encryptions of the two inputs c0 and c1.

TFHE Bootstrapping: The bootstrapping procedure is a common tool to all known FHE
schemes which allows to manage the noise growth during homomorphic evaluations. More
formally, the bootstrapping takes as input an LWE ciphertext of some message µ and a
bootstrapping key bk and outputs an LWE ciphertext of the same message µ, whose noise
is below some bound controlled via the choice of parameters. The TFHE bootstrapping
procedure can be decomposed in four steps, that are illustrated in Figure 1. The four
steps are described below, with their type signatures explicitely defined.

– Initialization: n-LWE→ Zn+1
2N × R̂q.

Given an LWE ciphertext (a | b) ∈ Ẑn+1
q as input, we define b̄ = ⌊2Nb⌉ and

āi = ⌊2Nai⌉ ∈ Z2N for each i ∈ [n]. Note that the cumulated error induced by
rounding over Z2N is taken into account in the definition of Cµ. The first step also

intializes a testvector, testv
def
= v(X) ∈ R̂q, v(X) =

∑N−1
i=0 viX

i and defines a noiseless
RLWE encryption (0, testv). The test vector coefficients are chosen such that, after the
BlindRotate, one can retrieve an LWE ciphertext of the input message as the constant
coefficient of the RLWE ciphertext.

– BlindRotate: Zn+1
2N × R̂q × TGSWn → TLWE

Given testv ∈ R̂q, n coefficients (ā1, · · · , ān, b̄) ∈ Zn+1
2N , and a bootstrapping key bki =

TGSWs̃,ϑBK
(si) for i ∈ [n], the BlindRotate algorithm returns a TLWE encryption of

testv ·X φ̄ where φ̄ = b̄−
∑n

i=1 siāi.
– Extract: TLWE→ dN -LWE

By interpreting a TLWE ciphertext of message µ ∈ R̂q under s̃ as a vector of d + 1
coefficients and taking into account the negacyclicity of the test vector polynomial
i.e. vi+N = −vi, Extract extracts an LWE ciphertext under key K = KeyExtract(s̃) of
dimension dN of the constant term of µ, µ(0).

– KeySwitch: dN -LWE× (n-LWE)dNt → n-LWE
Given a dN -LWE ciphertext containing a message µ under key K, and a keyswitching
key which consists of n-LWE encryptions of the bits of key K multiplied by the first t
powers of 1

Bks
under secret key s ∈ Bn, KeySwitch outputs an n-LWE ciphertext of the

same message µ under secret key s.

Plug-and-play sanitization for TFHE 13

The security of TFHE thus relies on both the decision LWE problem as well as the
decision TLWE problem, but also on a circular assumption that states having LWE and
TLWE encryptions of each other’s secret key has no impact on security.

3 Randomization of TLWE ciphertexts

In order to achieve sanitization of ciphertexts, we make use of randomized decomposi-
tion, and public key encryptions of zero. In this section, we review their definitions and
properties, we show how to construct them and analyze their impact on correctness.

3.1 Randomized decomposition

Notice that since the gadget matrix G only has constant coefficients, the product of G
with a vector of polynomials u ∈ R(d+1)·ℓ operates independently on each coefficient of u.
We can thus extend the sampling function from Lemma 1 to vectors of polynomials.

Definition 3 (Randomized Decomposition). We define the randomized decomposi-

tion function G−1
r (·) : R̂q

1×(d+1) → R1×(d+1)·ℓ by using N copies of the randomized

decomposition over Ẑd+1
q given by Lemma 1 with parameter r, i.e., we decompose each

coefficient independently.
We also define the randomized external product ⊡r, which is defined as the external prod-
uct ⊡ from Section 2.6, replacing G−1 (·) by the randomized decomposition G−1

r (·).

We give the full details of the randomized decomposition in supplementary materials
Section B.2. The following lemmata gives bounds on the noise propagation when using
the randomized external product, which is an adaptation of [CGGI20, Corollary 3.14].

Lemma 8 (Variance of randomized External Product). For any µ ∈ R̂q, c ∈
TLWEs̃(µ) with ∥Var(c)∥2 = ϑc, and C = TGSWs̃,ϑC

(0). Then C⊡r c ∈ TLWEs̃(0) and

∥Var (C⊡r c)∥2 ≤ r2(d+ 1)ℓNϑC

except with probability at most 2−2(d+1)·ℓ·N .

Proof. Let C = (A | As̃+ e), with A ∈ R̂q
(d+1)·ℓ×d

and e ∈ R̂q
(d+1)·ℓ

. We have

C⊡r c = G−1
r (c) ·C

=
(
G−1

r (c) ·A
∣∣ G−1

r (c) ·As̃+G−1
r (c) · e

)
So Err (C⊡r c) = G−1

r (c) · e. Using Lemma 3, the euclidean norm of G−1
r (c) is bounded

by r ·
√

(d+ 1) · ℓ ·N except with probability at most 2−2(d+1)·ℓ·N . Since all coefficients
of e are independent, we conclude using properties on covariance matrices. ⊓⊔

Lemma 9 (Variance of randomized Multiplexer). For any β, µ0, µ1 ∈ R̂q, c0 ∈
TLWEs̃(µ0) with ∥Var(c0)∥2 = ϑc0, c1 ∈ TLWEs̃(µ1) with ∥Var(c1)∥2 = ϑc1, and C =
TGSWs̃,ϑC

(β). Then c0 +C⊡r (c1 − c0) ∈ TLWEs̃(µβ) and

∥Var (c0 +C⊡r (c1 − c0))∥2 ≤ ϑcβ + r2(d+ 1)ℓNϑC

except with probability at most 2−2(d+1)·ℓ·N .

14 Florian Bourse and Malika Izabachène

Proof. Let C = Z+ βG, with Z = TGSWs̃,ϑC
(0). We have

c0 +C⊡r (c1 − c0) = c0 +G−1
r (c1 − c0) · (Z+ βG)

= c0 +G−1
r (c1 − c0) · Z+ β (c1 − c0)

= c1β + Z⊡r (c1 − c0)

We conclude using Lemma 8. ⊓⊔

3.2 Public key encryptions of zero

To be able to generate TLWE encryptions of zero without access to the secret key, some
of them are generated during the setup phase and are appended to the evaluation key as
a sanitization key pk. Taking a subset sum of those allows us to reuse them everytime we
need a fresh TLWE encryption of zero with a nice distribution. More formally, here are
the requirements for our construction, as well as an instantiation given in Construction 1
satisfying those.

Lemma 10 (Sanitization key). There exist two algorithms PkGen and PkEnc such that:

PkGen(1λ, s̃): on input a security parameter λ, and a TLWE secret key s̃ ∈ R̂q
d
, PkGen

outputs a public key pk.
PkEnc(pk): for any TLWE secret key s̃, on input a public key pk the output of PkEnc

satisfies the two conditions:

– (pk,PkEnc(pk)) ≈s (pk, (u | us̃+ eu)) where u is uniform over R̂q
1×d

, and pk is
honestly generated from PkGen(1λ, s̃).

– ∆
(
Xj · PkEnc(pk),PkEnc(pk)

)
= 0, for any j ∈ Z2N , and any pk.

The first condition is required in the proof of Lemma 12. The distribution of eu is
not important for the sanization property but it has to remain small for correctness. The
second condition is used in the proof of Lemma 16 and could be relaxed to be negligible,
but we keep it 0 to simplify the proofs since our construction reaches the condition.

Remark 3. By adding a message to the (d + 1)-th coordinate of PkEnc(pk), we get a
public key encryption scheme for polynomials with the nice following property: it allows
packing N messages into one ciphertext; rotating the messages around the different slots
by multiplying by X does not change the distribution of the ciphertext, even to somebody
knowing the secret key. We give an example of protocol betweenA, B and C, which coupled
with the Extract procedure works as follows:

1. A honestly generates the secret key s̃, and public key pk = PkGen(1λ, s̃). It keeps s̃
and broadcasts pk.

2. B encrypts N messages (x1, . . . , xN) as ct = PkEnc(pk) +
(
0,
∑N

i=1 xiX
i
)
and sends

it to C;
3. C blindly selects the j-th message and sends Extract(X−jct) to A;
4. A retrieves xj but no information about either j or any of the xi, i ̸= j .

We believe this simple construction is of independent interest and might be use in other
contexts. For example, this idea of having a proxy that filters data and rerandomizes it
can be found in Access Control Encryption [DHO16].

Construction 1 We exhibit a concrete example of a construction satisfying the proper-
ties of Lemma 10:

Plug-and-play sanitization for TFHE 15

– PkGen(1λ, s̃), on input security parameter λ, and secret key s̃ generates m fresh encryp-
tions of 0 with noise variance ϑpk pki = TLWEs̃,ϑpk (0) and outputs pk = (pki)i=1...m.

– PkEnc(pki), on input public key pk = (pki)i=1...m samples a uniformly random binary
vector r = (ri)i=1...m ∈ {0, 1}m, and a uniformly random vector j = (ji)i=1...m ∈ Zm

2N

and outputs
m∑
i=1

riX
jipki.

Lemma 11 proves that our instantiations of PkGen and PkEnc, given in Construction 1,
satisfy the property claimed in Lemma 10.

Lemma 11. For any TLWE secret key s̃, Construction 1 has the following properties:

– Let ε > 0, if m > ((d+ 1)N log q − 2 log ε)− 1, we have:

∆ ((pk,PkEnc(pk)), (pk, (u | u · s̃+ eu))) ≤ ε

where u is uniform over R̂q
1×d

, and pk is honestly generated from PkGen(1λ, s̃);

– ∆
(
Xj · PkEnc(pk),PkEnc(pk)

)
= 0, for any j ∈ Z2N , and any pk.

Proof. First, notice that for any j ∈ Z2N , any pk, j uniformly sampled in Zm
2N ,

∆
(
XjXji , Xji

)
= 0 since ji is uniform in Z2N .

Now, for any secret key s̃, for any j ∈ Zm
2N , and pk honestly generated from PkGen(1λ, s̃),

if we write Xjipki = (ai | ais̃+ ei) ∈ R̂q
1×(d+1)

, A = (ai)i=1...m, and e = (ei)i=1...m, we
want to analyze the joint distribution of pk and

m∑
i=1

riX
jipki =

(
m∑
i=1

riai

∣∣∣∣∣
(

m∑
i=1

riai

)
s̃+

m∑
i=1

riei

)

which in turn is given by the distribution of
(
A,
∑m

i=1 riai,
∑m

i=1 riei, e
)
. Note that since

we’re only dealing with sums, we can view the vectors of polynomials ai of R̂q
1×d

as

vectors of ẐdN
q . Thus, we want to show that for any e ∈ R̂q

m
,

∆

((
A,

m∑
i=1

riai,

m∑
i=1

riei, e

)
,

(
A,u,

m∑
i=1

riei, e

))
≤ ε

where each ai is sampled uniformly at random in ẐdN
q , each ri is sampled uniformly at

random in {0, 1}, and u is uniformly random in ẐdN
q .

The min-entropy of r is H∞ (r) = m, so taking account the leakage of at most N log(q)

bits, H∞

(
r

∣∣∣∣∣
m∑
i=1

riei

)
≥ m − N log(q). For any i = 1 . . . k, the probability of collision

modulo 2i, Pri ≤ 2−(m−N log(q)) = qN

2m . Note that
k∑

i=1

2i·dN ≤ 2 ·qdN , thus, using Lemma 7,

∆

((
A,

m∑
i=1

riai,
m∑
i=1

riei, e

)
,

(
A,u,

m∑
i=1

riei, e

))
≤
√

q(d+1)N

2m+1
< ε

⊓⊔

16 Florian Bourse and Malika Izabachène

Impact on security: We note that appending this sanitization key pk to the evaluation
key gives more power to an attacker. However, semantic security still relies on the decision
LWE and decision variant over rings, together with the circular security assumption. We
just assume more TLWE ciphertexts at hand.

3.3 Randomization of TLWE ciphertexts

Combining those tools gives a randomization procedure for TLWE ciphertexts, which also
scales the plaintext by any value α for which we know a ciphertext, and which outputs
a canonical distribution, statistically independent of α. Note that α doesn’t have to be
known. This is captured by the following lemma, where we analyze only the distribution for
TLWE samples, but adding the plaintext and verifying the correctness is straightforward.
Here, you can think of v as being a TLWE encryption of α.

Lemma 12. For any s̃ ∈ R̂q
d
, any e = (e1, . . . , e(d+1)·ℓ) ∈ R̂q

(d+1)·ℓ
, and any v ∈ R̂q

d+1
.

Let Ei be the matrix such that powX ·Ei = powX ⊗ ei, then we have:

(0, y) + PkEnc(pk) +
(
A | As̃+ e

)
⊡r v ≈s

(
u
∣∣ u · s̃+ e′ + eu

)
,

where A is uniform over R̂q
(d+1)·ℓ×d

, u is uniform over R̂q
1×d

, y ← 1
qDR,r, pk is honestly

generated from PkGen(1λ, s̃), eu = Err (PkEnc(pk)), and e′ ← D 1
q
R,Γ , with

Γ = r

√√√√ 1

q2
IN +

(d+1)·ℓ∑
i=1

Et
iEi.

The proof of this lemma is twofold, since we need to analyze both the distribution of
the mask, which has to be uniform, and of the noise, which has to be a discrete Gaussian.
Adding a public key encryption ensures that the mask is uniform, while the randomized
decomposition ensures that the noise has a correct distribution.
Before going through the technical details of the noise analysis, let us give more intu-
ition about our proof. Our construction ensures that the resulting noise is just a linear
combination of discrete Gaussians. Now, if the parameters of the discrete Gaussians are
big enough, they behave like continuous Gaussians, and any linear combination of them
remains a Gaussian distribution. What is left is to find the threshold we need to hit with
the parameters. Formally, this is given by the following result, which can be viewed as a
generalization of [BdMW16, Lemma 3.6] over rings.

Lemma 13. Let ε, r, r′ > 0. For any e = (e1, . . . , e(d+1)·ℓ) ∈ R̂q
(d+1)·ℓ

and any c ∈
R̂q

(d+1)·ℓ·N
. Let Ei be the matrix such that powX · Ei = powX ⊗ ei, then if min(r, r′) ≥

√
1 +B2(1 + q ∥e∥2) ·

√
ln(2·(d+1)·ℓ·N ·(1+1/ε))

π , we have

∆
(
etx+ y, e′

)
< 2ε

where x← DΛ⊥(G)+c,r, y ← 1
qDR,r′, and e′ ← 1

qDR,Γ , with

Γ =

√√√√r′2

q2
IN + r2

(d+1)·ℓ∑
i=1

Et
iEi.

Plug-and-play sanitization for TFHE 17

Proof. In order to be able to use known results on lattices, let us consider
the naive coefficient embedding of the polynomials. That is, we consider c =
(c1,0, c1,1, . . . , c1,N−1, c2,0, . . . , c(d+1)·ℓ,N−1) ∈ 1

qZ
(d+1)·ℓ·N . We define the following nota-

tions in order to better explain the intuition behind the proof:

– Ê =
(
E0

∣∣∣ E1

∣∣∣ . . .
∣∣∣ E(d+1)·ℓ

∣∣∣ 1
q IN

)
∈ 1

qZ
N×N((d+1)·ℓ+1);

– β =

(
rI(d+1)·ℓ·N 0

0 r′IN

)
∈ ZN((d+1)·ℓ+1)×N((d+1)·ℓ+1);

– ĉ = (c, 0, . . . 0) ∈ 1
qZ

N((d+1)·ℓ+1);

– Λ̂ = Λ⊥(G)N × ZN ⊂ ZN((d+1)·ℓ+1).

We want to show that:

∆

(
ÊD

Λ̂+ĉ,β
,D 1

q
ZN ,
√

Êβ2Êt

)
≤ 2ε

First, notice that the support of ÊD
Λ̂+ĉ,β

is 1
qZ

N , thanks to the 1
q In bloc in the matrix

Ê. Now we have to analyze the probability mass assigned to each element of 1
qZ

N .

Fix some z ∈ 1
qZ

N . The probability mass assigned to z by ÊD
Λ̂+ĉ,β

is proportional to

ρβ(Lz), where Lz =
{
v ∈ Λ̂+ ĉ | Êv = z

}
. We define the lattice L =

{
v ∈ Λ̂ | Êv = 0

}
;

note that Lz is a coset of L, so Lz = L+wz for anywz ∈ Lz. Let uz = βÊt
(
Êβ2Êt

)−1
z ∈

ZN . This is well defined because Êβ2Êt is a positive definite matrix.
For any t ∈ β−1Lz we have Êβ (t− uz) = 0, so uz is orthogonal to β−1Lz − uz.
From this we have ρ(t) = ρ(uz) · ρ(t− uz), and by summing for t ∈ β−1Lz:

ρ(β−1Lz) = ρ(uz) · ρ(β−1Lz − uz)

Observe that Lz−βuz = L+wz−βuz and Ê(wz−βuz) = 0, so β−1Lz−uz = β−1(L−c′)
for some c′ in the vector span of the lattice L. Since σN((d+1)·ℓ+1)(β) = min(r, r′) ≥
√
1 +B2(1 + q ∥e∥2) ·

√
ln(2·(d+1)·ℓ·N ·(1+1/ε))

π ≥ ηε(Lz), by Lemma 14 we obtain

ρ(β−1Lz) = ρ(uz) · ρβ(L − c′)

∈
[
1− ε

1 + ε
, 1

]
· ρβ(L) · ρ(uz) by Lemma 5

=

[
1− ε

1 + ε
, 1

]
· ρβ(L) · ρ

(
βÊt

(
Êβ2Êt

)−1
z

)
=

[
1− ε

1 + ε
, 1

]
· ρβ(L) · ρ√Êβ2Êt

(z) by definition of ρ

This implies that the statistical distance between ÊD
Λ̂+ĉ,β

and D 1
q
ZN ,
√

Êβ2Êt
is at most

1− 1−ε
1+ε ≤ 2ε. ⊓⊔

In order to conclude the proof of Lemma 13, we also need a bound on the smoothing
parameter of the lattice L, which is derived following a result from [BdMW16, Lemma
3.7], but adapted to our case. This bound is given in the following lemma, for which
the detailed proof is included in the supplementary material Section A for the sake of
completeness.

18 Florian Bourse and Malika Izabachène

Lemma 14. Let ε > 0. For any e ∈ R̂q
(d+1)·ℓ

, let L be as defined in the proof of
Lemma 13. Then we have:

ηε (L) ≤
√

1 +B2(1 + q ∥e∥2) ·
√

ln (2 · (d+ 1) · ℓ ·N · (1 + 1/ε))

π
.

We are now ready to prove Lemma 12:

Proof. Note that for any s̃ ∈ R̂q
d
, any e = (e1, . . . , e(d+1)·ℓ) ∈ R̂q

(d+1)·ℓ
, any v ∈ R̂q

d+1
,

and any A ∈ R̂q
(d+1)·ℓ×d

, we have:(
A | As̃+ e

)
⊡r v = G−1

r (v) ·
(
A | As̃+ e

)
=
(
G−1

r (v) ·A | G−1
r (v) ·As̃+G−1

r (v) · e
)

By Lemma 7, for A uniformly sampled in R̂q
(d+1)·ℓ×d

, u uniformly sampled in R̂q
1×d

,
y ← 1

qDR,r, pk honestly generated from PkGen(1λ, s̃), and eu = Err (PkEnc(pk)), thanks
to Lemma 10 we have:

(0, y) + PkEnc(pk) +
(
A | As̃+ e

)
⊡r v

≈s (u | u · s̃+ y + eu) +
(
G−1

r (v) ·A | G−1
r (v) ·As̃+G−1

r (v) · e
)

=
(
u+G−1

r (v) ·A |
(
u+G−1

r (v) ·A
)
s̃+G−1

r (v) · e+ y + eu
)

=
(
u | us̃+G−1

r (v) · e+ y + eu
)

Because ∆
(
u+G−1

r (v) ·A,u
)
= 0, i.e., they both are uniform random variable. Now

we conclude using Lemma 13. ⊓⊔

4 New sanitization algorithm

In this section, we first present our circuit private version of the BlindRotate algorithm,
which will be used as a building block for our sanitization procedure. We then introduce
the new Sanitize procedure and show it verifies the desired properties.

4.1 Circuit Private blind rotation

In order to achieve circuit privacy of the BlindRotate algorithm, the main loop of TFHE
BlindRotate (line 3 of Algorithm 1) (which is a multiplexer operation) is replaced by its
randomized counterpart. We also add a Gaussian noise when initializing the accumulator.

Lemma 15 (CP-BlindRotate noise propagation). Let bk = (bki)i be a bootstrapping
key where bki = TGSWs̃,ϑbk(si) for i ∈ [1, n], and pk = (pki)i be a sanitization key

where pki = TLWEs̃,ϑpk(0) for i ∈ [1,m]. For any testv ∈ R̂q, any (ā, b̄) ∈ Zn+1
2N , and

c = CP-BlindRotatetestv
(
(ā, b̄),bk,pk

)
, we have that c ∈ TLWEs̃(testv · X φ̄) where φ̄ =

b̄−
∑n

i=1 siāi, and

∥Var (c)∥2 ≤ n
r2

2πq2
+ n(d+ 1)ℓNr2ϑbk + nmϑpk (2)

Proof. The bound comes from the fact that Algorithm 1 performs n homomorphic mul-
tiplexers, each adding at most (d + 1)ℓNr2ϑbk to the variance of the accumulator using
Lemma 9, adds n independent TLWE encryption PkEnc(pk) of variance bounded bymϑpk,

and n independent Gaussian noise yi of variance
r2

2πq2
. ⊓⊔

Plug-and-play sanitization for TFHE 19

Algorithm 1 Private computation of a TLWE encryption of testv·X φ̄ where (ā, b̄) ∈ Zn+1
2N ,

and φ̄ = b̄−
∑n

i=1 siāi

Input: (ā, b̄) ∈ Zn+1
2N , a bootstrapping key bk = (bki)i, where bki is a TGSW encryption of si for

i ∈ [1, n], a sanitization key pk , and two fixed messages µ0 = 0, µ1 = 1
2
.

Output: CP-BlindRotatetestv
(
(ā, b̄),bk, pk

)
: a TLWE encryption of testv · Xφ̄ where φ̄ = b̄ −

∑n
i=1 siāi

and whose distribution is statistically close to a distribution independent from (ā, b̄), except for the
message part.

1: ACC = (0, . . . , 0, testv ·X−b̄) ∈ R̂q
d+1

2: for i = 1 to n

3: ACC+ = bki ⊡r ((X
āi − 1)ACC) + PkEnc(pk) + (0, yi) , yi ← D 1

q
R,r

4: Return ACC

Lemma 16. Let pk = (pki)i be a sanitization key where pki = TLWEs̃,ϑpk(0) for i ∈
[1,m]. For any testv ∈ R̂q, the encryption scheme of Section 2.6 is circuit private for the
class of functions

(
CP-BlindRotatetestv

(
(ā, b̄), ·,pk

))
(ā,b̄)

.

Intuitively, this means that no information is leaked by the output of CP-BlindRotate
beside testv ·X φ̄, even to someone who knows the secret key.

Proof. Before exhibiting our simulation algorithm, we first need to analyze the output of
Algorithm 1. The difficulty in this analysis is the dependencies between all the arguments
of G−1

r and also the other terms, as well as the power of X by which the accumulator is
multiplied at each step and that could leak information. In order to get around these issues,
our proof uses two rounds of induction following the iterations of step 3 of Algorithm 1:
a first round to sort out the powers of X, and the second one in order to deal with the
random variables corresponding to the states of the accumulator one at a time. After
iteration t, t > 0, we have:

ACCt =ACCt−1 + bkt ⊡r

((
X āt − 1

)
ACCt−1

)
+ PkEnc(pk) + (0, yt)

=ACCt−1 + (bkt − stG)⊡r

((
X āt − 1

)
ACCt−1

)
+ PkEnc(pk) + (0, yt)

+ stG⊡r

((
X āt − 1

)
ACCt−1

)
=(bkt − stG)⊡r

((
X āt − 1

)
ACCt−1

)
+ PkEnc(pk) + (0, yt)

+
(
1 +

(
X āt − 1

)
st
)
ACCt−1

Since 1 + (X āt − 1)st = X āt·st , we have,

ACCt =X ātstACCt−1 + (bkt − stG)⊡r

((
X āt − 1

)
ACCt−1

)
+ PkEnc(pk) + (0, yt)

To make the claim more readable, we define the following shorthand notations for

given ā, s, t and j, X≤ (resp. X>) for X raised to the power

t∑
i=1

siāi (resp.

t∑
i=j+1

siāi).

Given that ACC0 =
(
0, testv ·X−b̄

)
, a simple induction shows that,

ACCt =
(
0,
(
testv ·X−b̄

)
·X≤

)
+

t∑
j=1

X>PkEnc(pk) +
t∑

j=1

X> (0, yj)

+
t∑

j=1

X> (bkj − sjG)⊡r

((
X āj − 1

)
ACCj−1

)

20 Florian Bourse and Malika Izabachène

Now, remark that as probability distributions,(
X≤yt, X

>G−1
r

((
X āj − 1

)
ACCj−1

))
=
(
yt,G

−1
r

((
X āj − 1

)
ACCj−1

))
,

since yt and G−1
r ((X āj − 1)ACCj−1) are drawn from spherical Gaussian distributions,

and for any v ∈ 1
qR, i ∈ Z2N ,

∥∥Xi · v
∥∥
2
= ∥v∥2, because they have the same coefficients

modulo X2N − 1 in absolute value. We also have ∆ (X>PkEnc(pk),PkEnc(pk)) = 0 by
Lemma 10, so

ACCt =
(
0, testv ·X−b̄ ·X≤

)
+

t∑
j=1

(0, yj) + PkEnc(pk) + (bkj − sjG)⊡r

((
X āj − 1

)
ACCj−1

)
Following a simple induction, using twice Lemma 12 at each step,3

ACCt =
(
0, testv ·X−b̄ ·X≤

)
+

t∑
j=1

(0, yj) + PkEnc(pk) + (bkj − sjG)⊡r 0

When t = n, X−b̄ ·X≤ = X φ̄ and we have:

ACCn =
(
0, testv ·X φ̄

)
+

n∑
t=1

(0, yt) + PkEnc(pk) + (bkt − stG)⊡r 0

The following simulator Sim thus correctly simulates the output of
CP-BlindRotatetestv

(
(ā, b̄),bk,pk

)
:

Sim
(
testv ·X φ̄,bk,pk, testv

)
=CP-BlindRotatetestv ((0, 0),bk,pk)

+
(
0, testv ·

(
X φ̄ − 1

))
.

⊓⊔

4.2 Sanitizing algorithm

We are now ready to present our sanitization algorithm. It is basically the Bootstrap
algorithm from TFHE, with the testvector testv chosen to evaluate the identity function,
and where we replaced BlindRotate with CP-BlindRotate. It is described more formally in
Algorithm 2.

Lemma 17 (Sanitization noise propagation). If the parameters are set correctly,
Algorithm 2 is message-space preserving. In more details, we have that the variance of its
output has a norm bounded by

r2

2πq2
+ nr2(d+ 1)ℓNϑbk + n ·mϑpk + d ·N

(
B−2t
ks

4
+ t · B

2
ks

4
ϑks

)
(3)

Proof. This results combines Lemma 15 and Lemma 20. ⊓⊔
3 Here, it would seem that the PkEnc(pk) and yt variables could be reused, because they appear both
before and after applying our lemma. However, one has to be very careful because Lemma 12 can use
any argument at the right hand side of ⊡r, but it has to be independent of the random variables that
appear in the statement of the lemma, which is not the case if we want to reuse our randomness.

Plug-and-play sanitization for TFHE 21

Algorithm 2 Sanitizing algorithm for LWE encryption (a, b) of µ

Input: (a, b) an LWE encryption of µ, a bootstrapping key bk = (bki)i, where bki is a TGSW encryption
of si for i ∈ [1, n], a sanitization key pk, a keyswitching key ks, and two fixed messages µ0(= 0), µ1(=
1
2
).

Output: an LWE encryption (a′, b′) of µ0 if (a, b) ∈ C0 and µ1 if (a, b) ∈ C 1
2
.

1: µ̄ = µ0+µ1
2

and µ̄′ = µ0 − µ̄

2: testv = (1 +X + · · ·+XN−1) ·X−N
2 · µ̄′

3: b̄ = ⌊2Nb⌉ and āi = ⌊2Nai⌉
4: c′ = CP-BlindRotatetestv

(
(ā, b̄),bk, pk

)
5: c =

(
0, 1

4

)
+ Extract(c′)

6: Return KeySwitch(ks, c)

Lemma 18. Algorithm 2 is a sanitizing algorithm for encryption scheme of Section 2.6.

Proof. For the sake of readability, we omit the public parameters and keys as arguments
to the simulators. The simulator Sims of the sanitization game, when called on a message
µ, follows the same steps as the Sanitize algorithm except it calls the simulator Simcp

of the circuit privacy game instead of calling CP-BlindRotate, with φ̄ = µ. Indeed, the
output of Simcp is indistinguishable from the one of CP-BlindRotate. However, we have to
be careful, because we don’t know the correct phase φ̄ to invoke Simcp.
To better understand why our statement stands, we need to further analyze Extract which
is recalled in details in the supplementary materials, Section B.3 for the sake of complete-
ness.
On input a TLWE ciphertext (a | b), Extract trims the polynomial b to only its first coeffi-
cient b(0), and rearranges the coefficients of a(X−1) into a vector. Recall that the output
of Simcp(φ̄) has the following distribution:

CP-BlindRotatetestv ((0, 0),bk,pk) +
(
0, testv ·X φ̄

)
So, as long as testv ·X φ̄ = testv ·Xµ, ∆ (Extract (Simcp(φ̄)) ,Extract (Simcp(µ))) = 0. This
is the case when |⌊2Nb⌉ −

∑n
i=1 si⌊2Nai⌉ − µ| ≤ 1

4 , i.e. (a, b) ∈ Cµ. ⊓⊔

5 Parameters, security and experimental results

In this section, we proceed to the selection of parameters for the CP-BlindRotate given
in Algorithm 1.

Circuit Privacy: setting q = 245, n = 612, N = 2048, B = 512, d = 1, ℓ = 5:

– lemma 13 gives a lower bound on r′ and r, where r is the parameter of the randomized
gadget decomposition sampler. In order to set up r′ and r, we bound the norm of e,
where the ei,j ’s are sampled independently from a rounded continuous Gaussian of
standard deviation 2−42, so that ∥e∥2 ≤

√
(d+ 1) · ℓ ·N · ϑbk · b with overwhelming

probability (we take b = 10). Taking ε = 2−110 in Lemma 13, we obtain min(r, r′) ≥
30825846.6. We take r and r′ both equal to 30825788.

– with ε = 2−110 in Lemma 11, we obtain a bound on the number of TLWE samples in
pk, m ≥ 184539.

The cumulated statistical error in the algorithm CP-BlindRotate is thus n · (2 · 2−110 +
2−110) ≤ 2−98. Table 1 summarizes our choice for parameters which reach this statistical
bound.

22 Florian Bourse and Malika Izabachène

ε – lem.11 ε – lem.13 r m εtotal
2−110 2−110 30825846.6 184539 2−98

Table 1. Parameters and circuit privacy security bounds, taking q = 245, ϑbk = 5.17 · 10−26, ϑpk =
5.17 · 10−26, B = 512, d = 1 and ℓ = 5.

dim. stdev λc λq

LWE 612 2−15 123 85

TLWE/TGSW 2048 2−42 161 117

Table 2. Security parameters for q = 245 obtained using the lwe-estimator. λc (resp. λq) is the security
parameter obtained under the classical BKZ-sieve (resp. dual quantum) cost model.

Correctness: The final error variance after the circuit bootstrapping is given by bound
(3) from Lemma 17. In order to decrypt correctly, the amplitude of the error needs to be
< 1

4 (rather than 1
16) with overwhelming proability. With the parameters derived from

the circuit privacy lemmata and setting Bks = 23, t = 6 and the keyswitching variance
ϑKS = 9.3 · 10−10, we obtain an LWE ciphertext with error standard deviation ≈ 0.025,
which corresponds to a probability of decryption failure below 2−73.

Keys dimension, security: Table 2 shows the set of security parameters for each instance
of LWE, TLWE and TGSW ciphertexts we use, where the estimation is based on the
recommendation from [APS15,ACD+18,ACC+18].

– LWE - keyswitching key ks: n LWE ciphertexts with dimension n = 612 and noise
variance 9.3 · 10−10, base decomposition Bks = 23 and precision t = 6.

– TGSW - bootstrapping key bk: n TGSW ciphertexts with B = 512, ℓ = 5 and d = 1,
with noise variance ϑbk = 5.17 · 10−26.

– TLWE - sanitization key pk: m = 184539 TLWE samples. For TLWE and TGSW keys,
we take N = 2048 and ϑpk = ϑbk. The sanitization key computation step is part of
the pre-processing phase.

Implementation: As a proof of concept of our technique, we provide a C implementation
which can be found at https://github.com/fhe-extension/fhe-sanitize compatible
with Windows, Linux, and MacOS. We ran multiple experiments using the parameters
described previously and describe the results in Table 3. The randomness is sampled using
the CSPRNG of windows or directly from /dev/urandom. We use the library FFTW 4 for
our Fourier transformation, and the Gaussian sampler from [GPV08] with base sampler
from [MW17] since the parameters are quite large for our discrete Gaussians.
We notice that the Gaussian sampling and generation of PkEnc(pk) can be done offline,
and implemented precomputation for these. As shown by the conditions of our lemmata,
the parameters required for our technique to be applied are larger than those supported by
the TFHE library. Since our goal is to evaluate the overhead of our sanitization technique,
we compare the non-sanitizing bootstrapping (first column of Table 3) and the sanitizing
bootstrapping (remaining columns Table 3) with the same parameters on the same laptop.

The main downside of our parameter set is the size of pk. One option to bring down
the size of the sanitization key would be to use the output of a pseudorandom generator
for the uniform part of the ciphertexts in pk, and send the seed. However, this would only
cut the size by half. In order to circumvent this issue, one possible solution would be to
generate PkEnc(pk) on the fly or interactively, with m encryptions of zero being sent by

4 from https://www.fftw.org/.

https://github.com/fhe-extension/fhe-sanitize
https://www.fftw.org/

Plug-and-play sanitization for TFHE 23

Bootstrap Sanitize Sanitize Sanitize
5000 samples 500000 samples ∞ samples

3.15 s 21.69 s 5.20 s 4.68 s
Table 3. Timings of the concrete implementation. The experiments were run on a laptop running a
2.7 GHz Dual-Core Intel Core i5 with timings given in seconds. The first column reports the timing
of our implementation of the standard TFHE bootstrapping, the second one reports the timing of our
sanitization algorithm using 5000 precomputed Gaussian samples, the third one reports the timings of
the same sanitization algorithm using 500000 precomputed Gaussian samples, and the last one reports
the timings of the same sanitization algorithm in a setting where all the Gaussian sampling could be
precomputed. In all the experiments, we assume that all required encryptions of zero are precomputed.

the user. Our experiments shows that it takes roughly 45 seconds in order to generate one
PkEnc(pk) in the latter way on the same personal laptop as used for the results given in
Table 3.
For our experiments, we assume that the server has access to unrestricted memory and
precomputation, and we emulate this setting by precomputing only one element and
reusing it.

6 Discussion : removing PkEnc

As discussed in the introduction, for our set of parameters, we need to add fresh encryp-
tions of zero as well as in order to get ciphertexts with well distributed uniformly random
parts. For the sake of completeness, we capture the conditions where thes this step can
be avoided for larger parameters, and we discuss in this section the required conditions.

Lemma 19. If the parameter ℓ and Gaussian noise parameter r are large enough,
Lemma 18 still holds if PkEnc(pk) is removed at each loop iteration of Algorithm 2.

Since this technique leads to an inefficient satinization algorithm, the condition for the
required bounds are detailed into the following proof.

Proof. First, let us discuss the structure of Rq, where q = 2k. Since XN + 1 = (X + 1)N

mod 2, the ideals of Rq are generated by X + 1 and 2, so any ideal of Rq can be written
as 2i(X + 1)jRq, for some i ∈ [0, k − 1] and some j ∈ [0, N − 1].
Moreover, we have that in Rq, (X + 1)N = 2Q(X), with Q an invertible polynomial

in Rq. This follows from the following three facts: First, (X + 1)N = 1 + 2X
N
2 + XN

mod 4; this can be easily shown by induction (recall that N is a power of 2). Second,
for any polynomial P ∈ Rq, P is invertible if and only if P mod (X + 1) is odd. If d

is odd, ((X + 1)C(X) + d)−1 = 1
d

∑N−1
i=0

(
− (X+1)C(X)

d

)i
. Third and last, the parity of P

mod (X + 1) is the same as the parity of the sum of the coefficients of P .

Combining all of these, we have that X
N
2 is invertible, so (X + 1)NRq = 2Rq, which

gives us the following alternative definition for the ideals of Rq: any ideal of Rq is of the
form It = (X + 1)tRq for some t ∈ [0, Nk − 1].

We also have that any polynomial P ∈ Rq can be uniquely described as

P =

Nk−1∑
i=0

pi(X + 1)i, with pi ∈ {0, 1}.

24 Florian Bourse and Malika Izabachène

In the following, we will use P mod (X+1)j to denote the truncated sum

j−1∑
i=0

pi(X+1)i,

so P mod (X + 1) is actually P mod 2 mod (X + 1).

We also define the gcd of two elements of Rq in the following natural way:

gcd(P, P ′) is the smallest t in [0, Nk − 1] such that P, P ′ ∈ It

We are now ready to dive into the proof. We want to show that for any e ∈ R̂q
(d+1)·ℓ

,

y ∈ R̂q, c ∈ R̂q
(d+1)·ℓ

: (
A,xt ·A, etx+ y

)
≈s

(
A,ut, etx+ y

)
,

where A is uniform over R̂q
(d+1)·ℓ×d

, x ← DΛ⊥(G)+c,r and u is uniform over R̂q
d
. The

remainder of the proof is handled exactly as in subsection 3.2. However, our situation
does not match the usual setting to use the Leftover Hash Lemma over a ring structure,
since we are dealing with rings, modulo a power of 2. Thankfully, we can adapt the proof
of [MM11, Lemma 2.3]. For any distribution Z over a set Z, we have the following relation
between the statistical distance between Z and the uniform distribution over Z, UZ , with
the collision probability of Z, Col(Z).

∆(Z,UZ) ≤
1

2

√
|Z| · Col(Z)− 1.

We are interested in the distance to uniformity of
(
A,xt ·A

)
conditioned on etx+ y, so

following their arguments, we have this distance to uniformity bounded by

1

2

√
qNdPr

(
(xt − x′t) ·A = 0

)
withA uniform and x,x′ ← DΛ⊥(G)+c,r conditioned on etx+y. Following their techniques,

we can condition on the gcd of x and x′, and obtain: for any distribution X on R
(d+1)·ℓ
q ,

if gcd(x,x′) = t, Pr
(
(xt − x′t) ·A = 0

)
= 1

|It|d , so

∆
(
(A,xt ·A), (A,ut)

)
≤ 1

2

√√√√Nk−1∑
t=1

1

2d(Nk−t)
· Col(Xt)

where x← X and Xt = X mod (X +1)t. To conclude the proof, we just need to analyze
the collision probability of the distribution x mod (X + 1)t conditioned on etx + y, for
any t ∈ {1, Nk− 1}, where x← DΛ⊥(G)+c,r, which we bound by its maximal value, when
t = 1. In order to bound this quantity, we use the min-entropy of x mod (X + 1). Since
etx + y only has qNd possibilities, so the min-entropy of x mod (X + 1) conditioned
on etx + y is greater than H∞(x mod (X + 1)) − Nkd. For any v ∈

(
Λ⊥(G) + c

)
mod (X + 1), if the conditions of Lemma 4 are met, we have:(

DΛ⊥(G)+c,r mod (X + 1)
)
(v) =

ρr(v + (X + 1)Λ⊥(G))

ρr(Λ⊥(G) + c)

≤ (1 + ε)r(d+1)·ℓ det(Λ⊥(G))

(1− ε)r(d+1)·ℓ det((X + 1)Λ⊥(G))

Plug-and-play sanitization for TFHE 25

Let us analyze the lattice (X +1)Λ⊥(G) more precisely. We define J ∈ ZN×N the matrix
such that powX · J = X + 1, and B0 ∈ Zℓ×ℓ the basis of the lattice {u ∈ 1

qZ
ℓ | gu ∈ Z},

that is:

J =



1 0 . . . 0 −1

1 1 0
. . . 0

0
. . .

. . .
. . .

...
...
. . . 1 1 0

0 . . . 0 1 1


, B0 =


B −1

. . .
. . .
. . . −1

B



Note that while Λ⊥(G) is generated by the matrix Id ⊗ B0 ⊗ IN , (X + 1)Λ⊥(G)
is generated by Id ⊗ B0 ⊗ J. Since det (J) = 2, we have that det

(
(x+ 1)Λ⊥(G)

)
=

2(d+1)·ℓ det
(
Λ⊥(G)

)
. This gives us the following bound on the min-entropy of x mod (X+

1):

H∞
(
x
∣∣ etx+ y

)
≥ (d+ 1) · ℓ+ log

(
1− ε

1 + ε

)
−Nkd

Fixing ℓ large enough will ensure that the collision probability is below any chosen value,
allowing a choice of parameters that effectively yields sanitization without the need for
adding fresh encryptions of zero. The last condition that has to be met is that the Gaussian
parameter r has to be bigger than the smoothing parameters of both Λ⊥(G) and (X +
1)Λ⊥(G). We conclude our discussion by showing an upper bound on ηε

(
(X + 1)Λ⊥(G)

)
,

the bigger one. The columns of Id ⊗ B0 ⊗ J all have their norm bounded by
√
2 + 2B2.

So Lemma 2 gives us the bound ηε
(
(X + 1)Λ⊥(G)

)
≤
√

(2 + 2B2) · ln(2N(d+1)·ℓ(1+1/ε))
π .

⊓⊔

References

ACC+18. Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov,
Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio,
Dustin Moody, Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan. Homomorphic en-
cryption security standard. Technical report, HomomorphicEncryption.org, Toronto, Canada,
November 2018.

ACD+18. Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel Player, Ea-
monn W. Postlethwaite, Fernando Virdia, and Thomas Wunderer. Estimate all the LWE,
NTRU schemes! In Dario Catalano and Roberto De Prisco, editors, SCN 18, volume 11035
of LNCS, pages 351–367. Springer, Heidelberg, September 2018.

AGHS13. Shweta Agrawal, Craig Gentry, Shai Halevi, and Amit Sahai. Discrete Gaussian leftover hash
lemma over infinite domains. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part I, volume 8269 of LNCS, pages 97–116. Springer, Heidelberg, December 2013.

ALS16. Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption for
inner products, from standard assumptions. In Matthew Robshaw and Jonathan Katz, edi-
tors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 333–362. Springer, Heidelberg,
August 2016.

AP14. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In
Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 297–314. Springer, Heidelberg, August 2014.

AP20. Marc Abboud and Thomas Prest. Cryptographic divergences: New techniques and new ap-
plications. In Clemente Galdi and Vladimir Kolesnikov, editors, SCN 20, volume 12238 of
LNCS, pages 492–511. Springer, Heidelberg, September 2020.

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning
with errors. Cryptology ePrint Archive, Report 2015/046, 2015. https://eprint.iacr.org/
2015/046.

https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046

26 Florian Bourse and Malika Izabachène

ASY22. Shweta Agrawal, Damien Stehlé, and Anshu Yadav. Round-optimal lattice-based threshold
signatures, revisited. In 49th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229, pages 8:1–8:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

Ban93. Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of numbers.
Annals of Mathematics, 296(4):625–635, 1993.

BDF18. Guillaume Bonnoron, Léo Ducas, and Max Fillinger. Large FHE gates from tensored ho-
momorphic accumulator. In Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi,
editors, AFRICACRYPT 18, volume 10831 of LNCS, pages 217–251. Springer, Heidelberg,
May 2018.

BdMW16. Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. FHE circuit privacy
almost for free. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 62–89. Springer, Heidelberg, August 2016.

BGG+18. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R. Ras-
mussen, and Amit Sahai. Threshold cryptosystems from threshold fully homomorphic encryp-
tion. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume
10991 of LNCS, pages 565–596. Springer, Heidelberg, August 2018.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012, pages 309–325.
ACM, January 2012.

BLP+13. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 575–584. ACM Press, June 2013.

Bra12. Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical
GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417
of LNCS, pages 868–886. Springer, Heidelberg, August 2012.

BV14. Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based fhe as secure as pke. In Moni
Naor, editor, ITCS, pages 1–12. ACM, 2014.

CGGI20. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully
homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–91, January 2020.

CHK+18. Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. Bootstrap-
ping for approximate homomorphic encryption. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 360–384. Springer, Hei-
delberg, April / May 2018.

CIM19. Sergiu Carpov, Malika Izabachène, and Victor Mollimard. New techniques for multi-value
input homomorphic evaluation and applications. In Mitsuru Matsui, editor, CT-RSA 2019,
volume 11405 of LNCS, pages 106–126. Springer, Heidelberg, March 2019.

CKKS17. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic encryption
for arithmetic of approximate numbers. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 409–437. Springer, Heidelberg,
December 2017.

CLOT21. Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Improved pro-
grammable bootstrapping with larger precision and efficient arithmetic circuits for TFHE. In
Asiacrypt, LNCS 13092, pages 670–699. Spinger-Verlag, 2021.

CLR17. Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomorphic
encryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 1243–1255. ACM Press, October / November 2017.

CMdG+21. Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia Iliashenko,
Kim Laine, and Michael Rosenberg. Labeled psi from homomorphic encryption with reduced
computation and communication. In CCS 2021, pages 1135–1150. ACM, 2021.

CZ17. Long Chen and Zhenfeng Zhang. Bootstrapping fully homomorphic encryption with ring
plaintexts within polynomial noise. In Tatsuaki Okamoto, Yong Yu, Man Ho Au, and Yan-
nan Li, editors, ProvSec 2017, volume 10592 of LNCS, pages 285–304. Springer, Heidelberg,
October 2017.

DHO16. Ivan Damg̊ard, Helene Haagh, and Claudio Orlandi. Access control encryption: Enforcing
information flow with cryptography. In Martin Hirt and Adam D. Smith, editors, TCC 2016-
B, Part II, volume 9986 of LNCS, pages 547–576. Springer, Heidelberg, October / November
2016.

DM15. Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryption in less
than a second. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 617–640. Springer, Heidelberg, April 2015.

Plug-and-play sanitization for TFHE 27

DS16. Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 294–310.
Springer, Heidelberg, May 2016.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive, Report 2012/144, 2012.

GBA21. Antonio Guimarães, Edson Borin, and Diego F. Aranha. Revisiting the functional bootstrap
in TFHE. IACR TCHES, 2021(2):229–253, 2021. https://tches.iacr.org/index.php/

TCHES/article/view/8793.
Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,

editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.
GHV10. Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-Hop homomorphic encryption and

rerandomizable Yao circuits. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pages 155–172. Springer, Heidelberg, August 2010.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM
STOC, pages 197–206. ACM Press, May 2008.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer,
Heidelberg, August 2013.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
1–23. Springer, Heidelberg, May / June 2010.

LW20. Feng-Hao Liu and Zhedong Wang. Rounding in the rings. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 296–326. Springer,
Heidelberg, August 2020.

MM11. Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841
of LNCS, pages 465–484. Springer, Heidelberg, August 2011.

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 700–718. Springer, Heidelberg, April 2012.

MR07. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput., 37(1):267–302, 2007.

MS18. Daniele Micciancio and Jessica Sorrell. Ring packing and amortized FHEW bootstrapping.
In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
ICALP 2018, volume 107 of LIPIcs, pages 100:1–100:14. Schloss Dagstuhl, July 2018.

MW17. Daniele Micciancio and Michael Walter. Gaussian sampling over the integers: Efficient,
generic, constant-time. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part II, volume 10402 of LNCS, pages 455–485. Springer, Heidelberg, August 2017.

OPP14. Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Maliciously
circuit-private FHE. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 536–553. Springer, Heidelberg, August 2014.

Pei10. Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 80–97. Springer, Heidelberg, August 2010.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press,
May 2005.

https://tches.iacr.org/index.php/TCHES/article/view/8793
https://tches.iacr.org/index.php/TCHES/article/view/8793

28 Florian Bourse and Malika Izabachène

Supplementary material

A Proof of Lemma 14

We first recall the lemma we want to prove.

Lemma 14. Let ε > 0. For any e ∈ R̂q
(d+1)·ℓ

, let L be as defined in the proof of
Lemma 13. Then we have:

ηε (L) ≤
√

1 +B2(1 + q ∥e∥2) ·
√

ln (2 ·N · (d+ 1) · ℓ · (1 + 1/ε))

π
.

Proof. We use Lemma 2 to bound the smoothing parameter of L. Since Λ̂ = Λ⊥(G)×ZN

is of dimension N((d+1) · ℓ+1) and L is the sublattice of Λ̂ made of the vectors that are
orthogonal to Ê, we have that L is of dimension N(d+1) · ℓ. We thus exhibit N(d+1) · ℓ
independent short vectors of L to obtain an upper bound on λN(d+1)·ℓ (L). We first define
the matrix

B =


BIN −IN

. . .
. . .
. . . −IN

BIN

 ∈ ZNℓ×Nℓ

and remark that it is a basis for the lattice Λ⊥ (g) = {u ∈ ZNℓ | gtu ∈ Z}. The lattice Λ̂
is then generated by the columns of the matrix:

B = (B1 | . . . | B(d+1)·ℓ+1) =

(
Id+1 ⊗B 0

0 IN

)
∈ ZN((d+1)·ℓ+1)×N((d+1)·ℓ+1)

For k ≤ (d + 1) · ℓ let Uk = Bk − qB(d+1)·ℓ+1ÊBk, since ÊB(d+1)·ℓ+1 = 1
q IN

we directly have ÊUk = 0 and thus Uk ∈ L. The vectors U1,1, . . . ,U(d+1)·ℓ,N are
linearly independent since span

(
U1,1, . . . ,U(d+1)·ℓ,N ,B(d+1)·ℓ+1,1, . . . ,B(d+1)·ℓ+1,N

)
=

span
(
B1,1, . . . ,B(d+1)·ℓ+1,N

)
= RN((d+1)·ℓ+1) (which comes from the fact that B is a

basis of an N((d+ 1) · ℓ+ 1)-dimensional lattice). We now bound the norm of Uk,i:

∥Uk,i∥2 ≤ ∥Bk,i∥2 + q
∥∥∥(B(d+1)·ℓ+1ÊBk

)
i

∥∥∥
2

≤
√

1 +B2 + q ∥e∥2
√
1 +B2

=
√

1 +B2(1 + q ∥e∥2)

Finally we obtain λN(d+1)·ℓ(L) ≤
√
1 +B2(1 + q ∥e∥) and the result.

B TFHE Bootstrapping building blocks

B.1 G−1(·) computation

In Algorithm 3, we recall the G−1 algorithm that decomposes vectors in R̂q
1×(d+1)

into
vectors in R1×(d+1)·ℓ.

Plug-and-play sanitization for TFHE 29

Algorithm 3 Gadget Decomposition

Input: A vector v = (v1 | . . . | vd+1) ∈ R̂q
1×(d+1)

Output: A vector x such that x ·G = v and ∥x∥∞ ≤ B/2

1: For each vi choose the unique representative

N−1∑
j=0

vi,jX
j , with vi,j ∈ Ẑq. Note that vi,j is an exact

multiple of 1
Bℓ .

2: Decompose each vi,j uniquely as

ℓ∑
p=1

vi,j,p
1

Bp
where each vi,j,p ∈ [−B/2, B/2[

3: for i = 1 to d+ 1
4: for p = 1 to ℓ

5: xi,p =

N−1∑
j=0

vi,j,pX
j ∈ R

6: Return (x1,1 | . . . | xd+1,ℓ)

Algorithm 4 Randomized Gadget Decomposition

Input: A vector v = (v1 | . . . | vd+1) ∈ R̂q
1×(d+1)

Output: A vector x from a spherical Gaussian distribution with parameter r such that x ·G = v

1: For each vi choose the unique representative

N−1∑
j=0

vi,jX
j , with vi,j ∈ Ẑq. Note that vi,j is an exact

multiple of 1
Bℓ .

2: Set vj = (v1,j | . . . | vd+1,j)
3: For each j sample xj = (x1,j , . . . , x(d+1)·ℓ,j) ∈ R(d+1)·ℓ from Λ⊥

vj
(G) with parameter r

4: for i = 1 to (d+ 1)ℓ

5: xi =

N−1∑
j=0

xi,jX
j ∈ R

6: Return
(
x1

∣∣ . . .
∣∣ x(d+1)·ℓ

)

B.2 G−1
r (·) computation

In Algorithm 4, we recall the G−1
r algorithm that decomposes vectors in R̂q

1×(d+1)
into

vectors in R1×(d+1)·ℓ with spherical Gaussian distribution on a coset of Λ⊥(G).

B.3 Extract

In Algorithm 5, we recall the Extract algorithm that transforms TLWE ciphertexts into
N -LWE ciphertexts.

Algorithm 5 Extracting an N -LWE ciphertext of the constant term from a TLWE ci-
phertext

Input: c = (a, b) ∈ R̂q
d+1

.
Output: Extract (c): an N -LWE encryption of φs̃(c).

1: b′ = b(0).
2: for i = 1 to d

3: Set
(
a′
iN+j

)
j∈[0,N−1]

such that

N−1∑
j=0

a′
iN+jX

j = ai(
1

X
).

4: Return c′ = (a′, b′).

30 Florian Bourse and Malika Izabachène

B.4 KeySwitch

In Algorithm 6, we recall the keyswitching procedure of the bootstrapping, and the anal-
ysis of noise growth is provided in Lemma 20

Algorithm 6 keyswitching from secret key K of dimension dN to secret key s of dimen-
sion n
Input: c = (a, b) ∈ ẐdN+1

q , a keyswitching key ks = (ksi,j)i,j , where ksi,j is an n-LWE encryption of

Ki
1

B
j
ks

for i ∈ [1, N] and j ∈ [1, t].

Output: KeySwitch (c,ks): an n-LWE encryption of φK(c).

1: for i = 1 to dN
2: Round ai to the nearest element ⌊ai⌉Bt

ks
in 1

Bt
ks
Z.

3: Set (ai,j)j∈[1,t] such that

t∑
j=1

ai,j
1

Bj
ks

= ⌊ai⌉Bt
ks

(Decompose ⌊ai⌉Bt
ks

in basis Bks).

4: Return c′ = (0, b)−
∑
i,j

ai,jksi,j where the sum ranges over [1, dN]× [1, t].

Lemma 20 (Algorithm 6 noise propagation). Let c ∈ ẐdN+1
q , ks = (ksi,j)i,j, where

ksi,j is an n-LWE encryption of Ki
1

Bj
ks

for i ∈ [1, dN] and j ∈ [1, t] with noise variance

ϑks. Algorithm 6 outputs a sample c′ ∈ n-LWEs(φK(c)) such that:

Var
(
Err(c′)

)
≤ Var (Err(c)) + d

tNB2
ks

4
ϑks +

dN

4B2t
ks

(4)

Proof. During the first step of the algorithm, each rounding induces an error of at most
1

2Bt
ks
, hence the resulting variance for dN roundings.

Each part of the keyswitching key is multiplied by a coefficient between − 1
2Bks

and 1
2Bks

,
hence the resulting variance for combining dtN of them.

C Comparison with [DS16] satinatization strategy

In this section, we evaluate the cost of sanitizing a TFHE ciphertext using [DS16] strategy
with our parameter set. As in their application to FHEW, our analysis only estimates the
cost of their approach, not taking into account the probability of decryption failure. We
note that this should play in their advantage in this comparison, and that a serious
implementation of this technique should further refine this analysis.

Recall that [DS16] satinatization algorithm consists of iterations of two steps: (1) a
refresh step which, given an LWE ciphertext as input, brings the noise down to a low
level; (2) a rerandomization step which rerandomizes a ciphertext by adding a linear
combination of encryptions of 0 (equivalent to our PkEnc procedure) and adding a uniform
noise to decrease the statistical distance between two hypothetical ciphertexts (a poor
man’s noise flooding, counterpart of our small Gaussian noise).

As done in the analysis of [DS16] applied on FHEW for maximal efficiency, this reran-
domization is done right after the Extract, before switching to a lower dimension, so that
the noise in the encryptions of 0 can be chosen smaller.

The number of cycles in [DS16]’s strategy varies depending on the scheme and on the
parameters. This number is computed from the magnitude of the noise of the current
ciphertext compared to the magnitude of the noise introduced by Rerand.

Plug-and-play sanitization for TFHE 31

We give in Figure 2 a high-level overview of both strategies to highlight the differences
between them: while our rerandomization steps are similar, we perform them at each step
of the BlindRotate algorithm, whereas the soak-and-spin strategy applies it only once per
iteration of the bootstrapping, but requires between 5 and 6 such iterations to reach the
same level of security.

n-LWE TLWE N-LWE n-LWE

bk, pk ks

CP-BlindRotate Extract KeySwitch

n-LWE TLWE N-LWE N-LWE n-LWE

bk pk ks

BlindRotate Extract Rerand KeySwitch

×5− 6

Fig. 2. High-level overview of our sanitization strategy (bottom part) and [DS16] strategy (top part).

The first BlindRotate step outputs a LWE sample of standard deviation around 2−21

which gives a sample of noise amplitude less that 2−18 with probability 1−2−49. Adding a
linear combination of n · log q encryptions of zero with standard deviation 2−15 introduces
a noise negligible compared to the noise introduced by the BlindRotate step so that the
standard deviation is still around 2−21. The soaking noise amplitude B can be chosen
up to around 0.14 and still allows correct decryption when taking into account the noise
introduced by the keyswitching step. With these parameters, the statistical distance be-
tween two ciphextext in Cµ reached after is around δ = 2−18. In order to reach the same
statiscial distance as ours, we need between 5 and 6 cycles, which takes around 15 and 19
seconds with our set of parameters, according to our experiments.

To complete the comparison, we also note that our approach requires only one boot-
strapping, thus reducing the probability of decryption failure.

	Plug-and-play sanitization for TFHE

